Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.054
Filtrar
1.
Elife ; 122024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38241331

RESUMO

A recent experiment on zebrafish blastoderm morphogenesis showed that the viscosity (η) of a non-confluent embryonic tissue grows sharply until a critical cell packing fraction (ϕS). The increase in η up to ϕS is similar to the behavior observed in several glass-forming materials, which suggests that the cell dynamics is sluggish or glass-like. Surprisingly, η is a constant above ϕS. To determine the mechanism of this unusual dependence of η on ϕ, we performed extensive simulations using an agent-based model of a dense non-confluent two-dimensional tissue. We show that polydispersity in the cell size, and the propensity of the cells to deform, results in the saturation of the available free area per cell beyond a critical packing fraction. Saturation in the free space not only explains the viscosity plateau above ϕS but also provides a relationship between equilibrium geometrical packing to the dramatic increase in the relaxation dynamics.


Assuntos
Blastoderma , Peixe-Zebra , Animais , Viscosidade , Fenômenos Químicos , Morfogênese
2.
FEBS J ; 291(4): 663-671, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37943156

RESUMO

Developing tissues are patterned in space and time; this enables them to differentiate their cell types and form complex structures to support different body plans. Although space and time are two independent entities, there are many examples of spatial patterns that originate from temporal ones. The most prominent example is the expression of the genes hunchback, Krüppel, pdm, and castor, which are expressed temporally in the neural stem cells of the Drosophila ventral nerve cord and spatially along the anteroposterior axis of the blastoderm stage embryo. In this Viewpoint, we investigate the relationship between space and time in specific examples of spatial and temporal patterns with the aim of gaining insight into the evolutionary history of patterning.


Assuntos
Proteínas de Drosophila , Células-Tronco Neurais , Animais , Regulação da Expressão Gênica no Desenvolvimento , Drosophila/genética , Proteínas de Drosophila/genética , Blastoderma , Padronização Corporal/genética
3.
Dev Biol ; 505: 141-147, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37977522

RESUMO

The regulation of gene expression in precise, rapidly changing spatial patterns is essential for embryonic development. Multiple enhancers have been identified for the evolving expression patterns of the cascade of Drosophila segmentation genes that establish the basic body plan of the fly. Classic reporter transgene experiments identified multiple cis-regulatory elements (CREs) that are sufficient to direct various aspects of the evolving expression pattern of the pair-rule gene fushi tarazu (ftz). These include enhancers that coordinately activate expression in all seven stripes and stripe-specific elements that activate expression in one or more ftz stripes. Of the two 7-stripe enhancers, analysis of reporter transgenes demonstrated that the upstream element (UPS) is autoregulatory, requiring direct binding of Ftz protein to direct striped expression. Here, we asked about the endogenous role of the UPS by precisely deleting this 7-stripe enhancer. In ftzΔUPS7S homozygotes, ftz stripes appear in the same order as wildtype, and all but stripe 4 are expressed at wildtype levels by the end of the cellular blastoderm stage. This suggests that the zebra element and UPS harbor information to direct stripe 4 expression, although previous deletion analyses failed to identify a stripe-specific CRE within these two 7-stripe enhancers. However, the UPS is necessary for late ftz stripe expression, with all 7 stripes decaying earlier than wildtype in ftzΔUPS7S homozygotes. Despite this premature loss of ftz expression, downstream target gene regulation proceeds as in wildtype, and segmentation is unperturbed in the overwhelming majority of animals. We propose that this late-acting enhancer provides a buffer against perturbations in gene expression but is not required for establishment of Ftz cell fates. Overall, our results demonstrate that multiple enhancers, each directing distinct aspects of an overall gene expression pattern, contribute to fine-tuning the complex patterns necessary for embryonic development.


Assuntos
Proteínas de Drosophila , Animais , Blastoderma/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fatores de Transcrição Fushi Tarazu/genética , Fatores de Transcrição Fushi Tarazu/metabolismo , Regulação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética
4.
Genetics ; 225(4)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37804533

RESUMO

Epithelial cells contain polarity complexes on the lateral membrane and are organized in a hexagon-dominated polygonal array. The mechanisms regulating the organization of polygonal architecture in metazoan embryogenesis are not completely understood. Drosophila embryogenesis enables mechanistic analysis of epithelial polarity formation and its impact on polygonal organization. The plasma membrane (PM) of syncytial Drosophila blastoderm embryos is organized as a polygonal array with pseudocleavage furrow formation during the almost synchronous cortical division cycles. We find that polygonal (PM) organization arises in the metaphase (MP) of division cycle 11, and hexagon dominance occurs with an increase in furrow length in the metaphase of cycle 12. There is a decrease in cell shape index in metaphase from cycles 11 to 13. This coincides with Drosophila E-cad (DE-cadherin) and Bazooka enrichment at the edges and the septin, Peanut at the vertices of the furrow. We further assess the role of polarity and adhesion proteins in pseudocleavage furrow formation and its organization as a polygonal array. We find that DE-cadherin depletion leads to decreased furrow length, loss of hexagon dominance, and increased cell shape index. Bazooka and Peanut depletion lead to decreased furrow length, delay in onset of hexagon dominance from cycle 12 to 13, and increased cell shape index. Hexagon dominance occurs with an increase in furrow length in cycle 13 and increased DE-cadherin, possibly due to the inhibition of endocytosis. We conclude that polarity protein recruitment and regulation of endocytic pathways enable pseudocleavage furrow stability and the formation of a hexagon-dominated polygon array.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/genética , Drosophila/metabolismo , Blastoderma/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Membrana Celular/metabolismo , Caderinas/genética , Caderinas/metabolismo , Drosophila melanogaster/metabolismo
5.
Nat Commun ; 14(1): 3266, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37277340

RESUMO

Embryonic tissues undergoing shape change draw mechanical input from extraembryonic substrates. In avian eggs, the early blastoderm disk is under the tension of the vitelline membrane (VM). Here we report that the chicken VM characteristically downregulates tension and stiffness to facilitate stage-specific embryo morphogenesis. Experimental relaxation of the VM early in development impairs blastoderm expansion, while maintaining VM tension in later stages resists the convergence of the posterior body causing stalled elongation, failure of neural tube closure, and axis rupture. Biochemical and structural analysis shows that VM weakening is associated with the reduction of outer-layer glycoprotein fibers, which is caused by an increasing albumen pH due to CO2 release from the egg. Our results identify a previously unrecognized potential cause of body axis defects through mis-regulation of extraembryonic tissue tension.


Assuntos
Blastoderma , Galinhas , Animais , Regulação para Baixo , Blastoderma/fisiologia , Desenvolvimento Embrionário/genética
6.
STAR Protoc ; 4(3): 102344, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37352104

RESUMO

The implementation of in vitro approaches using undifferentiated embryonic cells from annual killifish to complement existing in vivo developmental studies has been hindered by a lack of efficient isolation techniques. Here, we present a protocol to isolate annual killifish blastoderm cells, at the epiboly and early dispersion phase, from embryos. We describe steps for hair removal, embryo cleaning, dechorionation, and cell purification. This protocol may also be used to develop strategies to isolate cells from embryos presenting similar challenges.


Assuntos
Blastoderma , Embrião não Mamífero , Animais , Morfogênese
7.
J Exp Zool A Ecol Integr Physiol ; 339(4): 411-422, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36750894

RESUMO

Since 2014, methods have been described to hatch chick embryos from shell-less culture after egg contents are first incubated within shells for 55-70 h. The present report describes for the first time a shell-less culture system for chick embryos from the blastoderm stage to hatching. For the first 69-70 h, egg contents suspended in polymethylpentene kitchen wrap (F.O.R. Wrap, Riken Fabro, Tokyo, Japan) supported in 6.35 or 6.67 cm inside diameter tripods and covered with a disc of immobilized Milli-Wrap, were rotated back and forth through 90° at 16 or 22 cycles per minute (CPM). Subsequently, the Milli-Wrap disc was removed and culture tripods were transferred to environmental chambers, which were rocked ±20° through incubation day 8.5 (E8.5). From E9, environmental chambers were maintained in the horizontal position through to hatching with controlled O2 and CO2 . To provide supplemental calcium, an aqueous solution containing 100 mg/mL of calcium l-lactate hydrate was injected through the plastic wrap into the albumen at E9 (2.5 mL) and at E13 (1.0 mL) or E15 (1.0 mL). After incubation for 69-70 h at 16 or 22 CPM, 80%-83% of previously unincubated egg contents yielded apparently normal embryos. Hatch rate of normal embryos resulting from turntable incubation at 16 or 22 CPM was approximately 43%. Of note, egg contents remained in the same culture tripod from blastoderm stage to hatching. This technique may find use as an educational tool and in basic investigations of early embryogenesis, teratogenesis, and gene transfer experiments.


Assuntos
Blastoderma , Cálcio , Embrião de Galinha , Animais , Blastoderma/fisiologia , Desenvolvimento Embrionário , Japão
8.
Curr Biol ; 32(22): 4989-4996.e3, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36332617

RESUMO

Early embryogenesis is characterized by rapid and synchronous cleavage divisions, which are often controlled by wave-like patterns of Cdk1 activity. Two mechanisms have been proposed for mitotic waves: sweep and trigger waves.1,2 The two mechanisms give rise to different wave speeds, dependencies on physical and molecular parameters, and spatial profiles of Cdk1 activity: upward sweeping gradients versus traveling wavefronts. Both mechanisms hinge on the transient bistability governing the cell cycle and are differentiated by the speed of the cell-cycle progression: sweep and trigger waves arise for rapid and slow drives, respectively. Here, using quantitative imaging of Cdk1 activity and theory, we illustrate that sweep waves are the dominant mechanism in Drosophila embryos and test two fundamental predictions on the transition from sweep to trigger waves. We demonstrate that sweep waves can be turned into trigger waves if the cell cycle is slowed down genetically or if significant delays in the cell-cycle progression are introduced across the embryo by altering nuclear density. Our genetic experiments demonstrate that Polo kinase is a major rate-limiting regulator of the blastoderm divisions, and genetic perturbations reducing its activity can induce the transition from sweep to trigger waves. Furthermore, we show that changes in temperature cause an essentially uniform slowdown of interphase and mitosis. That results in sweep waves being observed across a wide temperature range despite the cell-cycle durations being significantly different. Collectively, our combination of theory and experiments elucidates the nature of mitotic waves in Drosophila embryogenesis, their control mechanisms, and their mutual transitions.


Assuntos
Proteína Quinase CDC2 , Proteínas de Drosophila , Animais , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Blastoderma/metabolismo , Drosophila/genética , Mitose , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ciclo Celular/genética
9.
STAR Protoc ; 3(4): 101736, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36181681

RESUMO

The syncytial Drosophila blastoderm embryo contains apical microvilli with filamentous actin that are remodeled during nuclear division cycles 10-13. Here, we describe a protocol for preparing whole embryo samples and capturing images of microvilli using confocal and super-resolution STED microscopy. This protocol enables visualization and quantification of lengths and numbers of microvilli oriented along the imaging plane. We provide information on identifying different nuclear division cycles and examples of quantification from the interphase and metaphase of cycle 12. For complete details on the use and execution of this protocol, please refer to Sherlekar et al. (2020).


Assuntos
Blastoderma , Drosophila , Animais , Microvilosidades , Interfase , Metáfase
10.
Open Biol ; 12(9): 220147, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36128719

RESUMO

During early avian development, only a narrow band of cells (the edge cells, also called 'margin of overgrowth') at the rim of the embryo is responsible for blastoderm expansion by crawling over the vitelline membrane (VM) to cover the whole egg yolk in just 4 days (a process called epiboly). Surprisingly, this has not yet been studied in detail. Here we explore the edge cells of the chick embryo using in situ hybridization, immunohistochemistry and live imaging. Morphological and molecular properties reveal that the edge has a distinctive structure, being subdivided into sub-regions, including at least four distinct zones (which we name as leading, trailing, deep and stalk zones). This allows us to study reorganization of the edge region that accompanies reattachment of an explanted blastoderm to the VM. Immunohistochemistry uncovers distinct polarized cellular features resembling the process of collective cell migration described in other systems. Live imaging reveals dynamic lamellipodial and filopodial activity at the leading edge of the outermost cells. Our data provide evidence that edge cells are a distinct tissue. We propose that edge cells may be a useful model system for the study of wound healing and other closure events in epithelial cell sheets.


Assuntos
Blastoderma , Membrana Vitelina , Animais , Movimento Celular , Embrião de Galinha , Células Epiteliais , Cicatrização
11.
Cells Dev ; 171: 203802, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35934285

RESUMO

Segments are repeated anatomical units forming the body of insects. In Drosophila, the specification of the body takes place during the blastoderm through the segmentation cascade. Pair-rule genes such as hairy (h), even-skipped (eve), runt (run), and fushi-tarazu (ftz) are of the intermediate level of the cascade and each pair-rule gene is expressed in seven transversal stripes along the antero-posterior axis of the embryo. Stripes are formed by independent cis-regulatory modules (CRMs) under the regulation of transcription factors of maternal source and of gap proteins of the first level of the cascade. The initial blastoderm of Drosophila is a syncytium and it also coincides with the mid-blastula transition when thousands of zygotic genes are transcribed and their products are able to diffuse in the cytoplasm. Thus, we anticipated a complex regulation of the CRMs of the pair-rule stripes. The CRMs of h 1, eve 1, run 1, ftz 1 are able to be activated by bicoid (bcd) throughout the anterior blastoderm and several lines of evidence indicate that they are repressed by the anterior gap genes slp1 (sloppy-paired 1), tll (tailless) and hkb (huckebein). The modest activity of these repressors led to the premise of a combinatorial mechanism regulating the expression of the CRMs of h 1, eve 1, run 1, ftz 1 in more anterior regions of the embryo. We tested this possibility by progressively removing the repression activities of slp1, tll and hkb. In doing so, we were able to expose a mechanism of additive repression limiting the anterior borders of stripes 1. Stripes 1 respond depending on their distance from the anterior end and repressors operating at different levels.


Assuntos
Blastoderma , Proteínas de Drosophila , Animais , Blastoderma/metabolismo , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética
12.
Nat Commun ; 13(1): 3889, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794113

RESUMO

The blastoderm is a broadly conserved stage of early animal development, wherein cells form a layer at the embryo's periphery. The cellular behaviors underlying blastoderm formation are varied and poorly understood. In most insects, the pre-blastoderm embryo is a syncytium: nuclei divide and move throughout the shared cytoplasm, ultimately reaching the cortex. In Drosophila melanogaster, some early nuclear movements result from pulsed cytoplasmic flows that are coupled to synchronous divisions. Here, we show that the cricket Gryllus bimaculatus has a different solution to the problem of creating a blastoderm. We quantified nuclear dynamics during blastoderm formation in G. bimaculatus embryos, finding that: (1) cytoplasmic flows are unimportant for nuclear movement, and (2) division cycles, nuclear speeds, and the directions of nuclear movement are not synchronized, instead being heterogeneous in space and time. Moreover, nuclear divisions and movements co-vary with local nuclear density. We show that several previously proposed models for nuclear movements in D. melanogaster cannot explain the dynamics of G. bimaculatus nuclei. We introduce a geometric model based on asymmetric pulling forces on nuclei, which recapitulates the patterns of nuclear speeds and orientations of both unperturbed G. bimaculatus embryos, and of embryos physically manipulated to have atypical nuclear densities.


Assuntos
Blastoderma , Gryllidae , Animais , Núcleo Celular , Drosophila melanogaster
13.
Development ; 149(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35723262

RESUMO

Classical studies have established that the marginal zone, a ring of extra-embryonic epiblast immediately surrounding the embryonic epiblast (area pellucida) of the chick embryo, is important in setting embryonic polarity by positioning the primitive streak, the site of gastrulation. The more external extra-embryonic region (area opaca) was thought to have only nutritive and support functions. Using experimental embryology approaches, this study reveals three separable functions for this outer region. First, juxtaposition of the area opaca directly onto the area pellucida induces a new marginal zone from the latter; this induced domain is entirely posterior in character. Second, ablation and grafting experiments using an isolated anterior half of the blastoderm and pieces of area opaca suggest that the area opaca can influence the polarity of the adjacent marginal zone. Finally, we show that the loss of the ability of such isolated anterior half-embryos to regulate (re-establish polarity spontaneously) at the early primitive streak stage can be rescued by replacing the area opaca by one from a younger stage. These results uncover new roles of chick extra-embryonic tissues in early development.


Assuntos
Blastoderma , Linha Primitiva , Animais , Embrião de Galinha , Gástrula/fisiologia
14.
PLoS One ; 17(5): e0268524, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35580090

RESUMO

One challenge in avian embryology is establishing a standard developmental timetable, primarily because eggs incubated for identical durations can vary in developmental progress, even within the same species. For remedy, avian development is classified into distinct stages based on the formation of key morphological structures. Developmental stages exist for a few galliform species, but the literature is lacking a description of normal stages for California valley quail (Callipepla californica). Thus, the objective of this study was to stage and document the morphological and structural development of California valley quail. Over two laying seasons, 390 eggs were incubated at 37.8Ö¯ C in 60% RH for ≤23 days. Eggs were opened every ≤6 hours to document embryonic development, including, blastoderm diameter, anterior angle of nostril to beak tip, and lengths of wing, tarsus, third toe, total beak, total foot, and embryo. California valley quail embryos were staged and compared to domestic chicken (Gallus gallus domesticus), the staging standard for galliformes, as well as Japanese quail (Coturnix japonica), blue-breasted quail (Synoicus chinensis) and northern bobwhite quail (Colinus virginianus). This study produced the first description of the 43 normal stages of development for California valley quail. Compared with other galliformes, the California valley quail has a different number of stages and displays developmental heterochrony in stages 1-24, and morphological and developmental differences in stages 25-hatch. The observed differences emphasize the importance of staging individual avian species instead of relying on poultry animal models or close relatives for developmental reference. This is extremely important in species-specific embryological studies that evaluate critical windows of development or evaluate the impacts of environmental change on avian development. This study also suggests that staging frequencies of ≤6 hours and egg transport protocols should be standardized for future staging studies.


Assuntos
Colinus , Galliformes , Animais , Blastoderma , California , Galinhas , Coturnix , Codorniz
15.
BMC Genomics ; 23(1): 262, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379173

RESUMO

BACKGROUND: Cool temperature egg storage prior to incubation is a common practice in the broiler industry; however, prolonged egg storage causes increased embryonic mortality and decreased hatchability and growth in surviving chicks. Exposing eggs to short periods of incubation during egg storage (SPIDES) reduces the adverse consequences of prolonged storage. SPIDES increases blastodermal cell viability by reducing apoptosis, though the counteracting mechanisms are unclear. To define the impact of prolonged storage and SPIDES, transcriptome analysis compared gene expression from blastoderms isolated from eggs exposed to the following treatments: control (CR, stored at 17 °C for 4 days), prolonged storage (NSR, stored at 17 °C for 21 days), SPIDES (SR, stored at 17 °C for 21 days with SPIDES), and incubated control (C2, stored at 17 °C for 4 days followed by incubation to HH (Hamburger-Hamilton) stage 2, used as the ideal standard development) (n = 3/group). Data analysis was performed using the CLC Genomics Workbench platform. Functional annotation was performed using DAVID and QIAGEN Ingenuity Pathway Analysis. RESULTS: In total, 4726 DEGs (differentially expressed genes) were identified across all experimental group comparisons (q < 0.05, FPKM> 20, |fold change| > 1.5). DEGs common across experimental comparisons were involved in cellular homeostasis and cytoskeletal protein binding. The NSR group exhibited activation of ubiquitination, apoptotic, and cell senescence processes. The SR group showed activation of cell viability, division, and metabolic processes. Through comparison analysis, cellular respiration, tRNA charging, cell cycle control, and HMBG1 signaling pathways were significantly impacted by treatment and potential regulatory roles for ribosomal protein L23a (RPL23A) and MYC proto-oncogene, BHLH transcription factor (MYC) were identified. CONCLUSIONS: Prolonged egg storage (NSR) resulted in enriched cell stress and death pathways; while SPIDES (SR) resulted in enriched basic cell and anti-apoptotic pathways. New insights into DNA repair mechanisms, RNA processing, shifts in metabolism, and chromatin dynamics in relation to egg storage treatment were obtained through this study. Although egg storage protocols have been examined through targeted gene expression approaches, this study provided a global view of the extensive molecular networks affected by prolonged storage and SPIDES and helped to identify potential upstream regulators for future experiments to optimize egg storage parameters.


Assuntos
Blastoderma , Galinhas , Animais , Ovos , Perfilação da Expressão Gênica , Fatores de Tempo
16.
In Vitro Cell Dev Biol Anim ; 58(3): 199-209, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35288810

RESUMO

Chicken blastoderm cells (cBCs) obtained from stage X (EG&K) embryos are easily available materials for the study of cell development. However, cBCs are not widely used because they are hard to maintain in long-term culture in vitro. To solve this problem, ascorbic acid (AA; also known as vitamin C (VC)) and all-trans retinoic acid (ATRA) were added into basic culture medium to promote cell growth. Results suggested that cultured cBCs possessed strongly proliferative activity and maintained their pluripotency on the support of chicken embryonic fibroblast (CEF) feeder. Moreover, when VC or/and ATRA was added, the number and area of cBC colonies increased significantly compared with the control group. The expression of pluripotency genes (Sox2 and Nanog) and cell cycle-regulated genes (CCND1 and CDK6) was upregulated obviously. Furthermore, results showed that 5hmC levels in VC and RA groups increased significantly by DNA dot blot and immunofluorescence staining. These results provide strong evidence that VC and ATRA induced DNA demethylation and enhanced 5hmC level. The level of H3K27me3 was raised, while the level of H3K9me2 was reduced by addition of VC and ATRA. Finally, the expression of Tet1 and Dnmt3b was upregulated remarkably. Therefore, these results indicated that VC and ATRA enhanced DNA demethylation and then promoted cBC survival and proliferation in vitro.


Assuntos
Blastoderma , Galinhas , Animais , Ácido Ascórbico/farmacologia , Proliferação de Células , Embrião de Galinha , Desmetilação do DNA , Tretinoína/farmacologia
17.
Sci Rep ; 12(1): 49, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34997179

RESUMO

DNA is susceptible to damage by various sources. When the DNA is damaged, the cell repairs the damage through an appropriate DNA repair pathway. When the cell fails to repair DNA damage, apoptosis is initiated. Although several genes are involved in five major DNA repair pathways and two major apoptosis pathways, a comprehensive understanding of those gene expression is not well-understood in chicken tissues. We performed whole-transcriptome sequencing (WTS) analysis in the chicken embryonic fibroblasts (CEFs), stage X blastoderms, and primordial germ cells (PGCs) to uncover this deficiency. Stage X blastoderms mostly consist of undifferentiated progenitor (pluripotent) cells that have the potency to differentiate into all cell types. PGCs are also undifferentiated progenitor cells that later differentiate into male and female germ cells. CEFs are differentiated and abundant somatic cells. Through WTS analysis, we identified that the DNA repair pathway genes were expressed more highly in blastoderms and high in PGCs than CEFs. Besides, the apoptosis pathway genes were expressed low in blastoderms and PGCs than CEFs. We have also examined the WTS-based expression profiling of candidate pluripotency regulating genes due to the conserved properties of blastoderms and PGCs. In the results, a limited number of pluripotency genes, especially the core transcriptional network, were detected higher in both blastoderms and PGCs than CEFs. Next, we treated the CEFs, blastoderm cells, and PGCs with hydrogen peroxide (H2O2) for 1 h to induce DNA damage. Then, the H2O2 treated cells were incubated in fresh media for 3-12 h to observe DNA repair. Subsequent analyses in treated cells found that blastoderm cells and PGCs were more likely to undergo apoptosis along with the loss of pluripotency and less likely to undergo DNA repair, contrasting with CEFs. These properties of blastoderms and PGCs should be necessary to preserve genome stability during the development of early embryos and germ cells, respectively.


Assuntos
Apoptose/genética , Blastoderma/metabolismo , Galinhas/genética , Reparo do DNA/genética , Instabilidade Genômica/fisiologia , Células Germinativas/metabolismo , Animais , Embrião de Galinha , Dano ao DNA/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Peróxido de Hidrogênio/farmacologia , Células-Tronco Pluripotentes/metabolismo , Transcriptoma , Sequenciamento do Exoma
18.
PLoS Genet ; 18(1): e1010002, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34986144

RESUMO

A critical step in animal development is the specification of primordial germ cells (PGCs), the precursors of the germline. Two seemingly mutually exclusive mechanisms are implemented across the animal kingdom: epigenesis and preformation. In epigenesis, PGC specification is non-autonomous and depends on extrinsic signaling pathways. The BMP pathway provides the key PGC specification signals in mammals. Preformation is autonomous and mediated by determinants localized within PGCs. In Drosophila, a classic example of preformation, constituents of the germ plasm localized at the embryonic posterior are thought to be both necessary and sufficient for proper determination of PGCs. Contrary to this longstanding model, here we show that these localized determinants are insufficient by themselves to direct PGC specification in blastoderm stage embryos. Instead, we find that the BMP signaling pathway is required at multiple steps during the specification process and functions in conjunction with components of the germ plasm to orchestrate PGC fate.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Células Germinativas/fisiologia , Animais , Blastoderma , Padronização Corporal , Diferenciação Celular , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Epigênese Genética , Feminino , Células Germinativas/metabolismo , Masculino , Transdução de Sinais
19.
Development ; 149(2)2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35001104

RESUMO

Biological systems are highly complex, yet notably ordered structures can emerge. During syncytial stage development of the Drosophila melanogaster embryo, nuclei synchronously divide for nine cycles within a single cell, after which most of the nuclei reach the cell cortex. The arrival of nuclei at the cortex occurs with remarkable positional order, which is important for subsequent cellularisation and morphological transformations. Yet, the mechanical principles underlying this lattice-like positional order of nuclei remain untested. Here, using quantification of nuclei position and division orientation together with embryo explants, we show that short-ranged repulsive interactions between microtubule asters ensure the regular distribution and maintenance of nuclear positions in the embryo. Such ordered nuclear positioning still occurs with the loss of actin caps and even the loss of the nuclei themselves; the asters can self-organise with similar distribution to nuclei in the wild-type embryo. The explant assay enabled us to deduce the nature of the mechanical interaction between pairs of nuclei. We used this to predict how the nuclear division axis orientation changes upon nucleus removal from the embryo cortex, which we confirmed in vivo with laser ablation. Overall, we show that short-ranged microtubule-mediated repulsive interactions between asters are important for ordering in the early Drosophila embryo and minimising positional irregularity.


Assuntos
Blastoderma/metabolismo , Divisão do Núcleo Celular , Células Gigantes/metabolismo , Animais , Blastoderma/citologia , Núcleo Celular/metabolismo , Drosophila melanogaster , Células Gigantes/citologia , Microtúbulos/metabolismo , Estresse Mecânico
20.
Anim Biotechnol ; 33(5): 920-929, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33970791

RESUMO

The conservation of Taiwan Country chicken (TCC) is important due to concerns for the local breed's adaptability to the area and disease resistance. Furthermore, the genetic resource base of native chickens can be used to improve egg and meat production efficiency in commercial TCC. As the embryonic stem cells (ESCs) hold great potential for regenerative medicine and species conservation, the aims of this study were to isolate and characterize ESCs of TCC. The blastodermal cells (BCs) were isolated from the zona pellucida of stage X chicken embryos and cultured in conditioned medium for the proliferation and maintenance of BCs in vitro. The quantitative real-time polymerase chain reaction (qPCR) results showed that POUV, SOX2 and NANOG were expressed in the putative ESCs. In addition, the expression of pluripotent markers, SSEA-1 and SSEA-4, was detected. The DiI-stained ESCs were injected into the dorsal aorta of the E3.5 recipient fetuses soon after staining and the injected embryos were continuously incubated and checked on day 7 of incubation. It was shown that some DiI-positive cells were found in the 7-d-old chimeric embryos. The results demonstrated that some pluripotent cells existed in the cultured BCs for the production of germline chimeric embryos from TCC.


Assuntos
Blastoderma , Galinhas , Animais , Diferenciação Celular , Embrião de Galinha , Quimera , Meios de Cultivo Condicionados/metabolismo , Células-Tronco Embrionárias/metabolismo , Antígenos CD15/metabolismo , Taiwan
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...